Sensing dipole fields at atomic steps with combined scanning tunneling and force microscopy.
نویسندگان
چکیده
The electric field of dipoles localized at the atomic steps of metal surfaces due to the Smoluchowski effect were measured from the electrostatic force exerted on the biased tip of a scanning tunneling microscope. By varying the tip-sample bias the contribution of the step dipole was separated from changes in the force due to van der Waals and polarization forces. Combined with electrostatic calculations, the method was used to determine the local dipole moment in steps of different heights on Au(111) and on the twofold surface of an Al-Ni-Co decagonal quasicrystal.
منابع مشابه
CO tip functionalization inverts atomic force microscopy contrast via short-range electrostatic forces.
We investigate insulating Cu2N islands grown on Cu(100) by means of combined scanning tunneling microscopy and atomic force microscopy with two vastly different tips: a bare metal tip and a CO-terminated tip. We use scanning tunneling microscopy data as proposed by Choi, Ruggiero, and Gupta to unambiguously identify atomic positions. Atomic force microscopy images taken with the two different t...
متن کاملqPlus magnetic force microscopy in frequency-modulation mode with millihertz resolution
Magnetic force microscopy (MFM) allows one to image the domain structure of ferromagnetic samples by probing the dipole forces between a magnetic probe tip and a magnetic sample. The magnetic domain structure of the sample depends on the alignment of the individual atomic magnetic moments. It is desirable to be able to image both individual atoms and domain structures with a single probe. Howev...
متن کاملCombined scanning force microscopy and scanning tunneling spectroscopy of an electronic nano-circuit at very low temperature
متن کامل
Comparison of force sensors for atomic force microscopy based on quartz tuning forks and length-extensional resonators
The force sensor is key to the performance of atomic force microscopy (AFM). Nowadays, most atomic force microscopes use micromachined force sensors made from silicon, but piezoelectric quartz sensors are being applied at an increasing rate, mainly in vacuum. These self-sensing force sensors allow a relatively easy upgrade of a scanning tunneling microscope to a combined scanning tunneling/atom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 95 13 شماره
صفحات -
تاریخ انتشار 2005